
NAG C Library Function Document

nag_opt_lin_lsq (e04ncc)

1 Purpose

nag_opt_lin_lsq (e04ncc) solves linearly constrained linear least-squares problems and convex quadratic
programming problems. It is not intended for large sparse problems.

2 Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_lin_lsq (Integer m, Integer n, Integer nclin, const double a[],
Integer tda, const double bl[], const double bu[], const double cvec[],
double b[], double h[], Integer tdh, Integer kx[], double x[], double *objf,
Nag_E04_Opt *options, Nag_Comm *comm, NagError *fail)

3 Description

nag_opt_lin_lsq (e04ncc) is designed to solve a class of quadratic programming problems stated in the
following general form:

minimize
x2Rn

F xð Þ subject to l � x
Ax

� �
� u, ð1Þ

where A is an nL by n matrix and the objective function F xð Þ may be specified in a variety of ways
depending upon the particular problem to be solved. The available forms for F xð Þ are listed in Table 1
below, in which the prefixes FP, LP, QP and LS stand for ‘feasible point’, ‘linear programming’, ‘quadratic
programming’ and ‘least-squares’ respectively, c is an n element vector, b is an m element vector, and xk k
denotes the Euclidean length of x.

Problem Type f xð Þ Matrix H
FP Not applicable Not applicable
LP cTx Not applicable

QP1 1
2x

THx n by n symmetric positive semi-definite

QP2 cTxþ 1
2x

THx n by n symmetric positive semi-definite

QP3 1
2x

THTHx m by n upper trapezoidal

QP4 cTxþ 1
2x

THTHx m by n upper trapezoidal

LS1 1
2 b� Hxk k2 m by n

LS2 cTxþ 1
2 b� Hxk k2 m by n

LS3 1
2 b� Hxk k2 m by n upper trapezoidal

LS4 cTxþ 1
2 b� Hxk k2 m by n upper trapezoidal

Table 1

For problems of type LS, H is referred to as the least-squares matrix, or the matrix of observations, and b
as the vector of observations. The default problem type is LS1, and other objective functions are selected
by using the optional parameter prob (see Section 11.2).

When H is upper trapezoidal it will usually be the case that m ¼ n, so that H is upper triangular, but full
generality has been allowed for in the specification of the problem. The upper trapezoidal form is intended
for cases where a previous factorization, such as a QR factorization, has been performed.

The constraints involving A are called the general constraints. Note that upper and lower bounds are
specified for all the variables and for all the general constraints. An equality constraint can be specified by
setting li ¼ ui. If certain bounds are not present, the associated elements of l or u can be set to special

e04 – Minimizing or Maximizing a Function e04ncc

[NP3660/8] e04ncc.1

values that will be treated as �1 or þ1. (See the description of the optional parameter inf_bound in
Section 11.2.

The function F xð Þ is a quadratic function, whose defining feature is that its second-derivative matrix

r2F xð Þ (the Hessian matrix) is constant. For the LP case, r2F xð Þ ¼ 0; for QP1 and QP2, r2F xð Þ ¼ H ;

and for QP3, QP4 and LS problems, r2F xð Þ ¼ HTH and the Hessian matrix is positive semi-definite
(positive definite if H is full rank), so that F xð Þ is convex. If H is defined as the zero matrix,
nag_opt_lin_lsq (e04ncc) will solve the resulting linear programming problem; however, this can be
accomplished more efficiently by using nag_opt_lp (e04mfc).

Problems of type QP3 and QP4 for which H is not in upper trapezoidal form should be solved as problems
of type LS1 and LS2 respectively, with b ¼ 0.

The user must supply an initial estimate of the solution.

If H is of full rank then nag_opt_lin_lsq (e04ncc) will obtain the unique (global) minimum. If H is not of
full rank then the solution may still be a global minimum if all active constraints have non-zero Lagrange
multipliers. Otherwise the solution obtained will be either a weak minimum (i.e., with a unique optimal
objective value, but an infinite set of optimal x), or else the objective function is unbounded below in the
feasible region. The last case can only occur when F xð Þ contains an explicit linear term (as in problems
LP, QP2, QP4, LS2 and LS4).

The method used by nag_opt_lin_lsq (e04ncc) is described in detail in Section 10.

4 References

Gill P E, Hammarling S, Murray W, Saunders M A and Wright M H (1986a) Users’ guide for LSSOL
(Version 1.0) Report SOL 86-1 Department of Operations Research, Stanford University

Gill P E, Murray W, Saunders M A and Wright M H (1984b) Procedures for optimization problems with a
mixture of bounds and general linear constraints ACM Trans. Math. Software 10 282–298

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

Stoer J (1971) On the numerical solution of constrained least-squares problems SIAM J. Numer. Anal. 8
382–411

5 Arguments

1: m – Integer Input

On entry: m, the number of rows in the matrix H . If the problem is of type FP or LP, m is not
referenced and is assumed to be zero. The default type is LS1; other problem types can be specified
using the optional parameter prob, see Section 11.2.

If the problem is of type QP, m will usually be n, the number of variables. However, a value of m
less than n is appropriate for problem type QP3 or QP4 if H is an upper trapezoidal matrix with m
rows. Similarly, m may be used to define the dimension of a leading block of non-zeros in the
Hessian matrices of QP1 or QP2. In QP cases, m should not be greater than m; if it is, the last
m� nð Þ rows of H are ignored.

If the problem is a least-squares problem (in particular, the default type LS1), m is also the
dimension of the array b. Note that all possibilities (m < n, m ¼ n and m > n) are allowed in this
case.

Constraint: m > 0 if problem is not FP or LP.

2: n – Integer Input

On entry: n, the number of variables.

Constraint: n > 0.

e04ncc NAG C Library Manual

e04ncc.2 [NP3660/8]

3: nclin – Integer Input

On entry: nL, the number of general linear constraints.

Constraint: nclin � 0.

4: a½nclin� tda� – const double Input

On entry: the ith row of a must contain the coefficients of the ith general linear constraint (the ith
row of A), for i ¼ 1; 2; . . . ; nL. If nclin ¼ 0 then the array a is not referenced.

5: tda – Integer Input

On entry: the second dimension of the array a as declared in the function from which
nag_opt_lin_lsq (e04ncc) is called.

Constraint: tda � n if nclin > 0.

6: bl½nþ nclin� – const double Input
7: bu½nþ nclin� – const double Input

On entry: bl must contain the lower bounds and bu the upper bounds, for all the constraints in the
following order. The first n elements of each array must contain the bounds on the variables, and
the next nL elements the bounds for the general linear constraints (if any). To specify a non-existent
lower bound (i.e., lj ¼ �1), set bl½j� 1� � �inf_bound, and to specify a non-existent upper bound
(i.e., uj ¼ þ1), set bu½j� 1� � inf_bound, where inf_bound is one of the optional parameters

(default value 1020 (see Section 11.2). To specify the jth constraint as an equality, set
bl½j� 1� ¼ bu½j� 1� ¼ �, say, where �j j < inf_bound.

Constraints:

bl½j� � bu½j�, for j ¼ 0; 1; . . . ; nþ nclin� 1;
if bl½j� ¼ bu½j� ¼ �, �j j < inf_bound.

8: cvec½n� – const double Input

On entry: the coefficients of the explicit linear term of the objective function when the problem is of
type LP, QP2, QP4, LS2 or LS4.

If the problem is of type FP, QP1, QP3, LS1 (the default) or LS3, cvec is not referenced and may be
set to the null pointer.

9: b½m� – double Input/Output

On entry: the m elements of the vector of observations.

On exit: the transformed residual vector of equation (10).

b is referenced only in the case of least-squares problem types (in particular, the default type LS1.
For other problem types, b may be set to the null pointer.

10: h½m� tdh� – double Input/Output

On entry: the array h must contain the matrix H as specified in Table 1 (see Section 3).

For problems QP1 and QP2, the first m rows and columns of h must contain the leading m by m
rows and columns of the symmetric Hessian matrix. Only the diagonal and upper triangular
elements of the leading m rows and columns of h are referenced. The remaining elements are
assumed to be zero and need not be assigned.

For problems QP3, QP4, LS3 and LS4, the first m rows of h must contain an m by n upper
trapezoidal factor of either the Hessian or the least-squares matrix, ordered according to the array kx
(see below). The factor need not be of full rank, i.e., some of the diagonals may be zero. However,
as a general rule, the larger the dimension of the leading non-singular sub-matrix of H , the fewer
iterations will be required. Elements outside the upper trapezoidal part of the first m rows of H are
assumed to be zero and need not be assigned.

e04 – Minimizing or Maximizing a Function e04ncc

[NP3660/8] e04ncc.3

If a constrained least-squares problem contains a very large number of observations, storage
limitations may prevent storage of the entire least-squares matrix. In such cases, the user should
transform the original H into a triangular matrix before the call to nag_opt_lin_lsq (e04ncc) and
solve as type LS3 or LS4.

On exit: by default, h contains the upper triangular Cholesky factor R of equation (8), with columns
ordered as indicated by kx (see below). If the optional parameter hessian ¼ NagTrue (see
Section 11.2), and the problem is one of the LS or QP types, h contains the upper triangular

Cholesky factor of the Hessian matrix r2F, with columns ordered as indicated by kx (see below).
In either case, this matrix may be used to obtain the variance-covariance matrix or to recover the
upper triangular factor of the original least-squares matrix.

If the problem is of type FP or LP, h is not referenced and may be set to the null pointer.

11: tdh – Integer Input

On entry: the second dimension of the array h as declared in the function from which
nag_opt_lin_lsq (e04ncc) is called.

Constraint: tdh � n.

12: kx½n� – Integer Input/Output

On entry: for problems of type QP3, QP4, LS3 or LS4 the array kx must specify the order of the
columns of the matrix H with respect to the ordering of x. Thus if column j of H is the column
associated with the variable xi then kx½j� 1� ¼ i.

If the problem is of any other type then the array kx need not be initialized.

Constraints:

1 � kx½i� � n, for i ¼ 0; 1; . . . ; n� 1;
if i 6¼ j, kx½i� 6¼ kx½j�.

On exit: defines the order of the columns of H with respect to the ordering of x, as described above.

13: x½n� – double Input/Output

On entry: an initial estimate of the solution.

On exit: the point at which nag_opt_lin_lsq (e04ncc) terminated. If fail.code ¼ NE_NOERROR,
NW_SOLN_NOT_UNIQUE or NW_NOT_FEASIBLE, x contains an estimate of the solution.

14: objf – double * Output

On exit: the value of the objective function at x if x is feasible, or the sum of infeasibilities at x
otherwise. If the problem is of type FP and x is feasible, objf is set to zero.

15: options – Nag_E04_Opt * Input/Output

On entry/on exit: a pointer to a structure of type Nag_E04_Opt whose members are optional
parameters for nag_opt_lin_lsq (e04ncc). These structure members offer the means of adjusting
some of the parameter values of the algorithm and on output will supply further details of the
results. A description of the members of options is given below in Section 11. Some of the results
returned in options can be used by nag_opt_lin_lsq (e04ncc) to perform a ‘warm start’ (see the
member start in Section 11.2).

If any of these optional parameters are required then the structure options should be declared and
initialized by a call to nag_opt_init (e04xxc) and supplied as an argument to nag_opt_lin_lsq
(e04ncc). However, if the optional parameters are not required the NAG defined null pointer,
E04_DEFAULT, can be used in the function call.

16: comm – Nag_Comm * Input/Output

On entry/on exit: structure containing pointers for communication with an optional user-defined
printing function; see Section 11.3.1 for details. If the user does not need to make use of this

e04ncc NAG C Library Manual

e04ncc.4 [NP3660/8]

communication feature the null pointer NAGCOMM_NULL may be used in the call to nag_opt_lin_lsq
(e04ncc); comm will then be declared internally for use in calls to user-supplied functions.

17: fail – NagError * Input/Output

The NAG error parameter, see the Essential Introduction.

5.1 Description of Printed Output

Intermediate and final results are printed out by default. The level of printed output can be controlled by
the user with the structure member print_level (see Section 11.2). The default,
print_level ¼ Nag_Soln_Iter provides a single line of output at each iteration and the final result. This
section describes the default printout produced by nag_opt_lin_lsq (e04ncc).

The convention for numbering the constraints in the iteration results is that indices 1 to n refer to the
bounds on the variables, and indices nþ 1 to nþ nL refer to the general constraints.

The following line of output is produced at every iteration. In all cases, the values of the quantities printed
are those in effect on completion of the given iteration.

Itn is the iteration count.

Step is the step taken along the computed search direction. If a constraint is added during
the current iteration, Step will be the step to the nearest constraint. During the
optimality phase, the step can be greater than 1:0 only if the factor Rz is singular (see
Section 10.3).

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a weighted
sum of the magnitudes of constraint violations. If x is feasible, Objective is the value
of the objective function. The output line for the final iteration of the feasibility phase
(i.e., the first iteration for which Ninf is zero) will give the value of the true objective at
the first feasible point.

During the optimality phase, the value of the objective function will be non-increasing. During the
feasibility phase, the number of constraint infeasibilities will not increase until either a feasible point is
found, or the optimality of the multipliers implies that no feasible point exists. Once optimal multipliers
are obtained, the number of infeasibilities can increase, but the sum of infeasibilities will either remain
constant or be reduced until the minimum sum of infeasibilities is found.

Norm Gz ZT
1 gFR

�� ��, the Euclidean norm of the reduced gradient with respect to Z1 (see
Section 10.3). During the optimality phase, this norm will be approximately zero after a
unit step.

The printout of the final result consists of:

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a fixed
variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily fixed at
its current value). If Value lies outside the upper or lower bounds by more than the
optional parameter ftol (default value

ffiffi
�

p
, where � is the machine precision; see

Section 11.2), State will be ++ or respectively.

A key is sometimes printed before State to give some additional information about the state of a variable.

A
Alternative optimum possible. The variable is active at one of its bounds, but its
Lagrange Multiplier is essentially zero. This means that if the variable were
allowed to start moving away from its bound, there would be no change to the
objective function. The values of the other free variables might change, giving a
genuine alternative solution. However, if there are any degenerate variables
(labelled D), the actual change might prove to be zero, since one of them could

e04 – Minimizing or Maximizing a Function e04ncc

[NP3660/8] e04ncc.5

encounter a bound immediately. In either case, the values of the Lagrange
multipliers might also change.

D
Degenerate. The variable is free, but it is equal to (or very close to) one of its
bounds.

I
Infeasible. The variable is currently violating one of its bounds by more than ftol.

Value is the value of the variable at the final iteration.

Lower bound is the lower bound specified for variable j. (None indicates that
bl½j� 1� � �inf_bound, where inf_bound is the optional parameter.)

Upper bound is the upper bound specified for variable j. (None indicates that bu½j� 1� � inf_bound,
where inf_bound is the optional parameter.)

Lagr mult is the value of the Lagrange multiplier for the associated bound. This will be zero if
State is FR unless bl½j� 1� � �inf_bound and bu½j� 1� � inf_bound, in which case
the entry will be blank. If x is optimal, the multiplier should be non-negative if State
is LL, and non-positive if State is UL.

Residual is the difference between the variable Value and the nearer of its (finite) bounds
bl½j� 1� and bu½j� 1�. A blank entry indicates that the associated variable is not
bounded (i.e., bl½j� 1� � �inf_bound and bu½j� 1� � inf_bound).

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, bl½j� 1� and bu½j� 1� replaced by bl½nþ j� 1� and bu½nþ j� 1�
respectively, and with the following change in the heading:

L Con the name (L) and index j, for j ¼ 1; 2; . . . ; nL of the linear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, tda ¼ valueh i while n ¼ valueh i. These parameters must satisfy tda � n.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_ARRAY_CONS

The contents of array kx are not valid. Constraint: must contain a permutation of integers
1; 2; . . . ;n.

NE_BAD_PARAM

On entry, parameter print_level had an illegal value.

NE_B_NULL

prob ¼ valueh i but argument b ¼ NULL.

NE_BOUND

The lower bound for variable valueh i (array element bl½ valueh i�) is greater than the upper bound.

e04ncc NAG C Library Manual

e04ncc.6 [NP3660/8]

NE_BOUND_LCON

The lower bound for linear constraint valueh i (array element bl½ valueh i�) is greater than the upper
bound.

NE_CVEC_NULL

prob ¼ valueh i but argument cvec ¼ NULL.

NE_CYCLING

The algorithm could be cycling, since a total of 50 changes were made to the working set without
altering x. Check the detailed iteration printout for a repeated pattern of constraint deletions and
additions.

If a sequence of constraint changes is being repeated, the iterates are probably cycling.
(nag_opt_lin_lsq (e04ncc) does not contain a method that is guaranteed to avoid cycling; such a
method would be combinatorial in nature.) Cycling may occur in two circumstances: at a
constrained stationary point where there are some small or zero Lagrange multipliers; or at a point
(usually a vertex) where the constraints that are satisfied exactly are nearly linearly dependent. In
the latter case, the user has the option of identifying the offending dependent constraints and
removing them from the problem, or restarting the run with a larger value of the optional parameter
ftol (default value ¼

ffiffi
�

p
, where � is the machine precision; see Section 11.2). If this error exit

occurs but no suspicious pattern of constraint changes can be observed, it may be worthwhile to
restart with the final x (with optional parameter start ¼ Nag_Cold or Nag_Warm).

NE_H_NULL_QP

prob ¼ valueh i but argument h ¼ NULL. This problem type requires an array to be supplied in
parameter h.

NE_INT_ARG_LT

On entry, m must not be less than 1: m ¼ valueh i.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

NE_INVALID_INT_RANGE_1

Value valueh i given to max_iter is not valid. Correct range is max_iter � 0.

NE_INVALID_REAL_RANGE_F

Value valueh i given to ftol is not valid. Correct range is ftol > 0:0.

NE_INVALID_REAL_RANGE_FF

Value valueh i given to crash_tol is not valid. Correct range is 0:0 � crash_tol � 1:0.

NE_NOT_APPEND_FILE

Cannot open file stringh i for appending.

NE_NOT_CLOSE_FILE

Cannot close file stringh i.

NE_OPT_NOT_INIT

Options structure not initialized.

e04 – Minimizing or Maximizing a Function e04ncc

[NP3660/8] e04ncc.7

NE_STATE_VAL

state½ valueh i� is out of range. state½ valueh i� ¼ valueh i.

NE_UNBOUNDED

Solution appears to be unbounded.

This error indicator implies that a step as large as optional parameter inf_step (default value 1020;
see Section 11.2) would have to be taken in order to continue the algorithm. This situation can
occur only when H is singular, there is an explicit linear term, and at least one variable has no upper
or lower bound.

NE_WARM_START

start ¼ Nag_Warm but pointer state ¼ NULL.

NW_NOT_FEASIBLE

No feasible point was found for the linear constraints.

It was not possible to satisfy all the constraints to within the feasibility tolerance. In this case, the
constraint violations at the final x will reveal a value of the tolerance for which a feasible point will
exist – for example, if the feasibility tolerance for each violated constraint exceeds its Residual
(see Section 5.1) at the final point. The modified problem (with an altered value of the optional
feasibility tolerance, ftol) may then be solved using optional parameter start ¼ Nag_Warm (see
Section 11.2). The user should check that there are no constraint redundancies. If the data for the
constraints are accurate only to the absolute precision �, the user should ensure that the value of ftol
is greater than �. For example, if all elements of A are of order unity and are accurate only to three

decimal places, ftol should be at least 10�3.

NW_OVERFLOW_WARN

Serious ill conditioning in the working set after adding constraint valueh i. Overflow may occur in
subsequent iterations.

If overflow occurs preceded by this warning then serious ill conditioning has probably occurred in
the working set when adding a constraint. It may be possible to avoid the difficulty by increasing
the magnitude of the optional parameter ftol and re-running the program. If the message recurs
even after this change, the offending linearly dependent constraint j must be removed from the
problem.

NW_SOLN_NOT_UNIQUE

Optimal solution is not unique.

The point in x is a weak local minimum, i.e., the projected gradient is negligible, the Lagrange
multipliers are optimal, but either Rz (see Section 10.3) is singular or there is a small multiplier.
This means that x is not unique.

NW_TOO_MANY_ITER

The maximum number of iterations, valueh i, have been performed.

The limiting number of iterations (determined by the optional parameters max_iter and fmax_iter,
see Section 11.2) was reached before normal termination occurred. If the method appears to be
making progress (e.g., the objective function is being satisfactorily reduced), either increase the
iteration limits or, alternatively, rerun nag_opt_lin_lsq (e04ncc) using the optional parameter
start ¼ Nag_Warm to specify the initial working set. If the iteration limit is already large, but
some of the constraints could be nearly linearly dependent, check the extended iteration printout (see
Section 11.3) for a repeated pattern of constraints entering and leaving the working set. (Near-
dependencies are often indicated by wide variations in size in the diagonal elements of the matrix T
(see Section 10.2), which will be printed if optional parameter print_level ¼ Nag_Soln_Iter_Full

e04ncc NAG C Library Manual

e04ncc.8 [NP3660/8]

(default value print_level ¼ Nag_Soln_Iter; see Section 11.2.) In this case, the algorithm could be
cycling (see the comments below for fail.code ¼ NE_CYCLING).

7 Accuracy

nag_opt_lin_lsq (e04ncc) implements a numerically stable active set strategy and returns solutions that are
as accurate as the condition of the problem warrants on the machine.

8 Further Comments

8.1 Termination Criteria

nag_opt_lin_lsq (e04ncc) exits with fail.code ¼ NE_NOERROR if x is a strong local minimizer, i.e., the
reduced gradient is negligible, the Lagrange multipliers are optimal (see Section 5.1) and Rz (see
Section 10.3) is non-singular.

8.2 Scaling

Sensible scaling of the problem is likely to reduce the number of iterations required and make the problem
less sensitive to perturbations in the data, thus improving the condition of the problem. In the absence of
better information it is usually sensible to make the Euclidean lengths of each constraint of comparable
magnitude. See the e04 Chapter Introduction and Gill et al. (1981) for further information and advice.

9 Example

There is one example program file, the main program of which calls both examples EX1 and EX2.
Example 1 (EX1) shows the simple use of nag_opt_lin_lsq (e04ncc) where default values are used for all
optional parameters. An example showing the use of optional parameters is given in EX2 and is described
in Section 12.

Example 1 (EX1)

To minimize the function 1
2 b� Hxk k2, where

H ¼

1 1 1 1 1 1 1 1 1
1 2 1 1 1 1 2 0 0
1 1 3 1 1 1 �1 �1 �3
1 1 1 4 1 1 1 1 1
1 1 1 3 1 1 1 1 1
1 1 2 1 1 0 0 0 �1
1 1 1 1 0 1 1 1 1
1 1 1 0 1 1 1 1 1
1 1 0 1 1 1 2 2 3
1 0 1 1 1 1 0 2 2

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

and b ¼

1
1
1
1
1
1
1
1
1
1

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

subject to the bounds

0 � x1 � 2
0 � x2 � 2

�1 � x3 � 2
0 � x4 � 2
0 � x5 � 2
0 � x6 � 2
0 � x7 � 2
0 � x8 � 2
0 � x9 � 2

and to the general constraints

e04 – Minimizing or Maximizing a Function e04ncc

[NP3660/8] e04ncc.9

2:0 � x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 þ x8 þ 4x9 � 1
�1 � x1 þ 2x2 þ 3x3 þ 4x4 � 2x5 þ x6 þ x7 þ x8 þ x9 � 2:0

1:0 � x1 � x2 þ x3 � x4 þ x5 þ x6 þ x7 þ x8 þ x9 � 4:0

The initial point, which is infeasible, is

x0 ¼ 1:0; 0:5; 0:3333; 0:25; 0:2; 0:1667; 0:1428; 0:125; 0:1111ð ÞT,
and F x0ð Þ ¼ 9:4746 (to five figures).

The optimal solution (to five figures) is

x� ¼ 0:0; 0:041526; 0:58718; 0:0; 0:099643; 0:0; 0:04906; 0:0; 0:30565ð ÞT,

and F x�ð Þ ¼ 0:081341. Four bound constraints and all three general constraints are active at the solution.

9.1 Program Text

/* nag_opt_lin_lsq (e04ncc) Example Program.
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
*
* Mark 6 revised, 2000.
* Mark 8 revised, 2004.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage04.h>

static int ex1(void);
static int ex2(void);

int main(void)
{

Integer exit_status_ex1=0;
Integer exit_status_ex2=0;

Vprintf("nag_opt_lin_lsq (e04ncc) Example Program Results.\n");

exit_status_ex1 = ex1();
exit_status_ex2 = ex2();

return exit_status_ex1 == 0 && exit_status_ex2 == 0 ? 0 : 1;
}

#define A(I,J) a[(I)*tda + J]
#define H(I,J) h[(I)*tdh + J]

static int ex1(void)
{

/* Local variables */
Integer exit_status=0, i, j, *kx=0, m, n, nbnd, nclin, tda, tdh;
NagError fail;
double *a=0, *b=0, *bl=0, *bu=0, *h=0, objf=0.0, *x=0;

INIT_FAIL(fail);

Vprintf("\nExample 1: default options\n");
Vscanf(" %*[^\n]"); /* Skip heading in data file */
Vscanf(" %*[^\n]");

e04ncc NAG C Library Manual

e04ncc.10 [NP3660/8]

/* Read problem dimensions */
Vscanf(" %*[^\n]");
Vscanf("%ld%ld%ld%*[^\n]", &m, &n, &nclin);

if (m>0 && n>0 && nclin>=0)
{

nbnd = n + nclin;
if (!(a = NAG_ALLOC(nclin*n, double)) ||

!(b = NAG_ALLOC(m, double)) ||
!(bl = NAG_ALLOC(nbnd, double)) ||
!(bu = NAG_ALLOC(nbnd, double)) ||
!(h = NAG_ALLOC(m*n, double)) ||
!(x = NAG_ALLOC(n, double)) ||
!(kx = NAG_ALLOC(n, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
tda = n;
tdh = n;

}
else

{
Vprintf("Invalid m or n or nclin.\n");
exit_status = 1;
return exit_status;

}

/* Read h, b, a, bl, bu and x from data file */

Vscanf(" %*[^\n]");
for (i = 0; i < m; ++i)

for (j = 0; j < n; ++j)
Vscanf("%lf",&H(i,j));

Vscanf(" %*[^\n]");
for (i = 0; i < m; ++i)

Vscanf("%lf",&b[i]);

if (nclin > 0)
{

Vscanf(" %*[^\n]");
for (i = 0; i < nclin; ++i)

for (j = 0; j < n; ++j)
Vscanf("%lf",&A(i,j));

}

/* Read lower bounds */
Vscanf(" %*[^\n]");
for (i = 0; i < nbnd; ++i)

Vscanf("%lf",&bl[i]);

/* Read upper bounds */
Vscanf(" %*[^\n]");
for (i = 0; i < nbnd; ++i)

Vscanf("%lf",&bu[i]);

/* Read the initial point x */
Vscanf(" %*[^\n]");
for (i = 0; i < n; ++i)

Vscanf("%lf",&x[i]);

/* nag_opt_lin_lsq (e04ncc).
* Solves linear least-squares and convex quadratic
* programming problems (non-sparse)
*/

nag_opt_lin_lsq(m, n, nclin, a, tda, bl, bu, (double*)0, b,
h, tdh, kx, x, &objf,

e04 – Minimizing or Maximizing a Function e04ncc

[NP3660/8] e04ncc.11

E04_DEFAULT, NAGCOMM_NULL, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from nag_opt_lin_lsq (e04ncc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
END:
if (a) NAG_FREE(a);
if (b) NAG_FREE(b);
if (bl) NAG_FREE(bl);
if (bu) NAG_FREE(bu);
if (h) NAG_FREE(h);
if (x) NAG_FREE(x);
if (kx) NAG_FREE(kx);
return exit_status;

} /* ex1 */

static int ex2(void)
{

/* Local variables */
Integer exit_status=0, i, j, *kx=0, m, n, nbnd, nclin, tda, tdh;
NagError fail;
Nag_E04_Opt options;
double *a=0, *bl=0, *bu=0, *cvec=0, *h=0, objf, *x=0;

INIT_FAIL(fail);

Vprintf("\nExample 2: some options are set\n");
Vscanf(" %*[^\n]"); /* Skip heading in data file */

/* Read problem dimensions */
Vscanf(" %*[^\n]");
Vscanf("%ld%ld%ld%*[^\n]", &m, &n, &nclin);

if (m>0 && n>0 && nclin>=0)
{

nbnd = n + nclin;
if (!(a = NAG_ALLOC(nclin*n, double)) ||

!(bl = NAG_ALLOC(nbnd, double)) ||
!(bu = NAG_ALLOC(nbnd, double)) ||
!(cvec = NAG_ALLOC(n, double)) ||
!(h = NAG_ALLOC(m*n, double)) ||
!(x = NAG_ALLOC(n, double)) ||
!(kx = NAG_ALLOC(n, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
tda = n;
tdh = n;

}
else

{
Vprintf("Invalid m or n or nclin.\n");
exit_status = 1;
return exit_status;

}

/* We solve a QP2 type problem in this example */

/* Read cvec, h, a, bl, bu and x from data file */

Vscanf(" %*[^\n]");
for (i = 0; i < m; ++i)

Vscanf("%lf",&cvec[i]);

e04ncc NAG C Library Manual

e04ncc.12 [NP3660/8]

Vscanf(" %*[^\n]");
for (i = 0; i < m; ++i)

for (j = 0; j < n; ++j)
Vscanf("%lf",&H(i,j));

if (nclin > 0)
{

Vscanf(" %*[^\n]");
for (i = 0; i < nclin; ++i)

for (j = 0; j < n; ++j)
Vscanf("%lf",&A(i,j));

}

/* Read lower bounds */
Vscanf(" %*[^\n]");
for (i = 0; i < nbnd; ++i)

Vscanf("%lf",&bl[i]);

/* Read upper bounds */
Vscanf(" %*[^\n]");
for (i = 0; i < nbnd; ++i)

Vscanf("%lf",&bu[i]);

/* Read the initial point x */
Vscanf(" %*[^\n]");
for (i = 0; i < n; ++i)

Vscanf("%lf",&x[i]);

/* Change the problem type */
/* nag_opt_init (e04xxc).
* Initialization function for option setting
*/

nag_opt_init(&options);
options.prob = Nag_QP2;

/* nag_opt_lin_lsq (e04ncc), see above. */
nag_opt_lin_lsq(m, n, nclin, a, tda, bl, bu, cvec, (double*)0,

h, tdh, kx, x, &objf,
&options, NAGCOMM_NULL, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_opt_lin_lsq (e04ncc).\n%s\n", fail.message);
exit_status = 1;

}

/* Free options memory */
/* nag_opt_free (e04xzc).
* Memory freeing function for use with option setting
*/

nag_opt_free(&options, "all", &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from nag_opt_free (e04xzc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
END:
if (a) NAG_FREE(a);
if (bl) NAG_FREE(bl);
if (bu) NAG_FREE(bu);
if (cvec) NAG_FREE(cvec);
if (h) NAG_FREE(h);
if (x) NAG_FREE(x);
if (kx) NAG_FREE(kx);
return exit_status;

} /* ex2 */

e04 – Minimizing or Maximizing a Function e04ncc

[NP3660/8] e04ncc.13

9.2 Program Data

nag_opt_lin_lsq (e04ncc) Example Program Data

Data for example 1

Values of m, n, nclin
10 9 3

Objective function matrix H
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 2.0 1.0 1.0 1.0 1.0 2.0 0.0 0.0
1.0 1.0 3.0 1.0 1.0 1.0 -1.0 -1.0 -3.0
1.0 1.0 1.0 4.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 3.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 2.0 1.0 1.0 0.0 0.0 0.0 -1.0
1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 0.0 1.0 1.0 1.0 2.0 2.0 3.0
1.0 0.0 1.0 1.0 1.0 1.0 0.0 2.0 2.0

Vector of observations - array b
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Linear constraint matrix A
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0
1.0 2.0 3.0 4.0 -2.0 1.0 1.0 1.0 1.0
1.0 -1.0 1.0 -1.0 1.0 1.0 1.0 1.0 1.0

Lower bounds
0.0 0.0 -1.0e+25 0.0 0.0 0.0 0.0 0.0 0.0
2.0 -1.0e+25 1.0

Upper bounds
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
1.0E+25 2.0 4.0

Initial estimate of x
1.0 0.5 0.3333 0.25 0.2 0.1667 0.1428 0.125 0.1111

Data for example 2 (QP problem)

Values of m, n, nclin
9 9 3

Objective function vector cvec
-4.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -0.1 -0.3

Objective function matrix H
2.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0
1.0 2.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0
1.0 1.0 2.0 1.0 1.0 0.0 0.0 0.0 0.0
1.0 1.0 1.0 2.0 1.0 0.0 0.0 0.0 0.0
1.0 1.0 1.0 1.0 2.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Linear constraint matrix A
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0
1.0 2.0 3.0 4.0 -2.0 1.0 1.0 1.0 1.0
1.0 -1.0 1.0 -1.0 1.0 1.0 1.0 1.0 1.0

Lower bounds
-2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0

Upper bounds
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.5 1.5 4.0

Initial estimate of x

e04ncc NAG C Library Manual

e04ncc.14 [NP3660/8]

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9.3 Program Results

nag_opt_lin_lsq (e04ncc) Example Program Results.

Example 1: default options

Parameters to e04ncc

Linear constraints............ 3 Number of variables........... 9
Objective matrix rows......... 10

prob.................... Nag_LS1 start................... Nag_Cold
ftol.................... 1.05e-08 rank_tol................ 1.11e-14
crash_tol............... 1.00e-02 hessian.................. Nag_FALSE
inf_bound............... 1.00e+20 inf_step................ 1.00e+20
fmax_iter............... 60 max_iter................ 60
machine precision....... 1.11e-16
print_level......... Nag_Soln_Iter
outfile................. stdout

Memory allocation:
state................... Nag
ax...................... Nag lambda.................. Nag

Rank of the objective function data matrix = 6

Itn Step Ninf Sinf/Objective Norm Gz
0 0.0e+00 1 2.145500e+00 0.0e+00
1 2.5e-01 1 1.145500e+00 0.0e+00
2 3.8e-01 0 6.595685e+00 2.3e+01
3 1.0e-01 0 5.342505e+00 1.9e+01
4 7.1e-02 0 4.616975e+00 2.2e+00
5 1.0e-01 0 4.558492e+00 1.3e+00
6 1.0e+00 0 4.523485e+00 9.3e-16
7 3.6e-01 0 1.857752e+00 6.9e+00
8 2.3e-01 0 1.228605e+00 5.1e+00
9 3.9e-02 0 1.187042e+00 0.0e+00

10 1.0e+00 0 8.473550e-01 1.9e-15
11 6.0e-01 0 2.190278e-01 5.9e-01
12 1.0e+00 0 1.652065e-01 2.5e-15
13 1.0e+00 0 9.605160e-02 2.6e-15
14 3.0e-02 0 9.236999e-02 4.5e-01
15 1.0e+00 0 8.134082e-02 1.7e-15

Exit from LS problem after 15 iterations.

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual
V 1 LL 0.00000e+00 0.00000e+00 2.00000e+00 1.5715e-01 0.0000e+00
V 2 FR 4.15261e-02 0.00000e+00 2.00000e+00 0.0000e+00 4.1526e-02
V 3 FR 5.87176e-01 None 2.00000e+00 0.0000e+00 1.4128e+00
V 4 LL 0.00000e+00 0.00000e+00 2.00000e+00 8.7817e-01 0.0000e+00
V 5 FR 9.96432e-02 0.00000e+00 2.00000e+00 0.0000e+00 9.9643e-02
V 6 LL 0.00000e+00 0.00000e+00 2.00000e+00 1.4728e-01 0.0000e+00
V 7 FR 4.90578e-02 0.00000e+00 2.00000e+00 0.0000e+00 4.9058e-02
V 8 LL 0.00000e+00 0.00000e+00 2.00000e+00 8.6026e-01 0.0000e+00
V 9 FR 3.05649e-01 0.00000e+00 2.00000e+00 0.0000e+00 3.0565e-01

L Con State Value Lower Bound Upper Bound Lagr Mult Residual
L 1 LL 2.00000e+00 2.00000e+00 None 3.7775e-01 -6.6613e-16
L 2 UL 2.00000e+00 None 2.00000e+00 -5.7914e-02 4.4409e-16
L 3 LL 1.00000e+00 1.00000e+00 4.00000e+00 1.0753e-01 4.4409e-16

Exit after 15 iterations.

Optimal LS solution found.

e04 – Minimizing or Maximizing a Function e04ncc

[NP3660/8] e04ncc.15

Final LS objective value = 8.1340823e-02

Example 2: some options are set

Parameters to e04ncc

Linear constraints............ 3 Number of variables........... 9
Objective matrix rows......... 9

prob.................... Nag_QP2 start................... Nag_Cold
ftol.................... 1.05e-08 rank_tol................ 1.05e-07
crash_tol............... 1.00e-02 hessian.................. Nag_FALSE
inf_bound............... 1.00e+20 inf_step................ 1.00e+20
fmax_iter............... 60 max_iter................ 60
machine precision....... 1.11e-16
print_level......... Nag_Soln_Iter
outfile................. stdout

Memory allocation:
state................... Nag
ax...................... Nag lambda.................. Nag

Rank of the objective function data matrix = 5

Itn Step Ninf Sinf/Objective Norm Gz
0 0.0e+00 0 0.000000e+00 4.5e+00
1 7.5e-01 0 -4.375000e+00 5.0e-01
2 1.0e+00 0 -4.400000e+00 2.8e-17
3 3.0e-01 0 -4.700000e+00 8.9e-01
4 1.0e+00 0 -5.100000e+00 3.4e-17
5 5.4e-01 0 -6.055714e+00 1.7e+00
6 1.1e-02 0 -6.113326e+00 1.6e+00
7 1.1e-01 0 -6.215049e+00 1.2e+00
8 1.0e+00 0 -6.538008e+00 3.5e-17
9 6.5e-01 0 -7.428704e+00 7.2e-02

10 1.0e+00 0 -7.429717e+00 1.8e-17
11 1.0e+00 0 -8.067718e+00 5.6e-17
12 1.0e+00 0 -8.067778e+00 5.6e-17

Exit from QP problem after 12 iterations.

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual
V 1 UL 2.00000e+00 -2.00000e+00 2.00000e+00 -8.0000e-01 0.0000e+00
V 2 FR -2.33333e-01 -2.00000e+00 2.00000e+00 0.0000e+00 1.7667e+00
V 3 FR -2.66667e-01 -2.00000e+00 2.00000e+00 0.0000e+00 1.7333e+00
V 4 FR -3.00000e-01 -2.00000e+00 2.00000e+00 0.0000e+00 1.7000e+00
V 5 FR -1.00000e-01 -2.00000e+00 2.00000e+00 0.0000e+00 1.9000e+00
V 6 UL 2.00000e+00 -2.00000e+00 2.00000e+00 -9.0000e-01 0.0000e+00
V 7 UL 2.00000e+00 -2.00000e+00 2.00000e+00 -9.0000e-01 0.0000e+00
V 8 FR -1.77778e+00 -2.00000e+00 2.00000e+00 0.0000e+00 2.2222e-01
V 9 FR -4.55556e-01 -2.00000e+00 2.00000e+00 0.0000e+00 1.5444e+00

L Con State Value Lower Bound Upper Bound Lagr Mult Residual
L 1 UL 1.50000e+00 -2.00000e+00 1.50000e+00 -6.6667e-02 6.6613e-16
L 2 UL 1.50000e+00 -2.00000e+00 1.50000e+00 -3.3333e-02 8.8818e-16
L 3 FR 3.93333e+00 -2.00000e+00 4.00000e+00 0.0000e+00 6.6667e-02

Exit after 12 iterations.

Optimal QP solution found.

Final QP objective value = -8.0677778e+00

e04ncc NAG C Library Manual

e04ncc.16 [NP3660/8]

10 Further Description

This section gives a detailed description of the algorithm used in nag_opt_lin_lsq (e04ncc). This, and
possibly the next section, Section 11, may be omitted if the more sophisticated features of the algorithm
and software are not currently of interest.

10.1 Overview

nag_opt_lin_lsq (e04ncc) is based on an inertia-controlling method that maintains a Cholesky factorization
of the reduced Hessian (see below). The method is based on that of Gill and Murray (1978) and is
described in detail by Gill et al. (1981). Here we briefly summarize the main features of the method.

nag_opt_lin_lsq (e04ncc) uses essentially the same algorithm as the subroutine LSSOL described in Gill et
al. (1986a). It is based on a two-phase (primal) quadratic programming method with features to exploit the
convexity of the objective function due to Gill et al. (1984b). (In the full-rank case, the method is related
to that of Stoer, see Stoer (1971).) nag_opt_lin_lsq (e04ncc) has two phases: finding an initial feasible
point by minimizing the sum of infeasibilities (the feasibility phase), and minimizing the quadratic
objective function within the feasible region (the optimality phase). The two-phase nature of the algorithm
is reflected by changing the function being minimized from the sum of infeasibilities to the quadratic
objective function. The feasibility phase does not perform the standard simplex method (i.e., it does not
necessarily find a vertex), except in the LP case when nL � n. Once any iterate is feasible, all subsequent
iterates remain feasible.

nag_opt_lin_lsq (e04ncc) has been designed to be efficient when used to solve a sequence of related
problems — for example, within a sequential quadratic programming method for nonlinearly constrained
optimization (e.g., nag_opt_nlp (e04ucc)). In particular, the user may specify an initial working set (the
indices of the constraints believed to be satisfied exactly at the solution); see the discussion of the optional
parameter start in Section 11.2.

In general, an iterative process is required to solve a quadratic program. (For simplicity, we shall always
consider a typical iteration and avoid reference to the index of the iteration.) Each new iterate �x is defined
by

�x ¼ xþ �p, ð2Þ
where the step length � is a non-negative scalar, and p is called the search direction.

At each point x, a working set of constraints is defined to be a linearly independent subset of the
constraints that are satisfied ‘exactly’ (to within the tolerance defined by the optional parameter ftol; see
Section 11.2). The working set is the current prediction of the constraints that hold with equality at a
solution of (1). The search direction is constructed so that the constraints in the working set remain
unaltered for any value of the step length. For a bound constraint in the working set, this property is
achieved by setting the corresponding element of the search direction to zero. Thus, the associated
variable is fixed, and specification of the working set induces a partition of x into fixed and free variables.
During a given iteration, the fixed variables are effectively removed from the problem; since the relevant
elements of the search direction are zero, the columns of A corresponding to fixed variables may be
ignored.

Let nW denote the number of general constraints in the working set and let nFX denote the number of
variables fixed at one of their bounds (nW and nFX are the quantities Lin and Bnd in the extended iteration
printout from nag_opt_lin_lsq (e04ncc); see Section 11.3). Similarly, let nFR nFR ¼ n� nFXð Þ denote the
number of free variables. At every iteration, the variables are re-ordered so that the last nFX variables are
fixed, with all other relevant vectors and matrices ordered accordingly. The order of the variables is
indicated by the contents of the array kx on exit (see Section 5).

10.2 Definition of the Search Direction

Let AFR denote the nW by nFR sub-matrix of general constraints in the working set corresponding to the
free variables, and let pFR denote the search direction with respect to the free variables only. The general
constraints in the working set will be unaltered by any move along p if

AFRpFR ¼ 0. ð3Þ
In order to compute pFR, the TQ factorization of AFR is used:

e04 – Minimizing or Maximizing a Function e04ncc

[NP3660/8] e04ncc.17

AFRQFR ¼ 0 Tð Þ ð4Þ
where T is a non-singular nW by nW reverse-triangular matrix (i.e., tij ¼ 0 if iþ j < nW), and the non-
singular nFR by nFR matrix QFR is the product of orthogonal transformations (see Gill et al. (1984b)). If
the columns of QFR are partitioned so that

QFR ¼ Z Yð Þ, ð5Þ
where Y is nFR by nW, then the nZ nZ ¼ nFR � nWð Þ columns of Z form a basis for the null space of AFR.
Let nR be an integer such that 0 � nR � nZ , and let Z1 denote a matrix whose nR columns are a subset of
the columns of Z. (The integer nR is the quantity Zr in the extended iteration printout from
nag_opt_lin_lsq (e04ncc); see Section 11.3. In many cases, Z1 will include all the columns of Z.) The
direction pFR will satisfy (3) if

pFR ¼ Z1pZ ð6Þ
where pZ is any nR-vector.

10.3 The Main Iteration

Let Q denote the n by n matrix

Q ¼ QFR

IFX

� �
ð7Þ

where IFX is the identity matrix of order nFX. Let R denote an n by n upper triangular matrix (the
Cholesky factor) such that

QT ~r2FQ � HQ ¼ RTR, ð8Þ

and let the matrix of the first nZ rows and columns of R be denoted by RZ. (The matrix ~r2F in (8) is the
Hessian with its rows and columns permuted so that the free variables come first.)

The definition of pZ in (6) depends on whether or not the matrix RZ is singular at x. In the non-singular
case, pZ satisfies the equations

RT
Z RZpZ ¼ �gZ ð9Þ

where gZ denotes the vector ZTgFR and g denotes the objective gradient. (The norm of gFR is the printed
quantity Norm Gf; see Section 11.3.) When pZ is defined by (9), xþ p is the minimizer of the objective
function subject to the constraints (bounds and general) in the working set treated as equalities. In general,

a vector f Z is available such that RT
Z f Z ¼ �gZ , which allows pZ to be computed from a single back-

substitution RZpZ ¼ f Z . For example, when solving problem LS1, f Z comprises the first nZ elements of
the transformed residual vector

f ¼ P b� Hxð Þ ð10Þ
which is recurred from one iteration to the next, where P is an orthogonal matrix.

In the singular case, pZ is defined such that

RZpZ ¼ 0 and gTZ pZ < 0. ð11Þ
This vector has the property that the objective function is linear along p and may be reduced by any step
of the form xþ �p, where � > 0.

The vector ZTgFR is known as the projected gradient at x. If the projected gradient is zero, x is a
constrained stationary point in the subspace defined by Z. During the feasibility phase, the projected
gradient will usually be zero only at a vertex (although it may be zero at non-vertices in the presence of
constraint dependencies). During the optimality phase, a zero projected gradient implies that x minimizes
the quadratic objective when the constraints in the working set are treated as equalities. At a constrained
stationary point, Lagrange multipliers �A and �B for the general and bound constraints are defined from the
equations

AT
FR�A ¼ gFR and �B ¼ gFX � AT

FX�A. ð12Þ

e04ncc NAG C Library Manual

e04ncc.18 [NP3660/8]

Given a positive constant � of the order of the machine precision, the Lagrange multiplier �j

corresponding to an inequality constraint in the working set is said to be optimal if �j � � when the
associated constraint is at its upper bound, or if �j � �� when the associated constraint is at its lower
bound. If a multiplier is non-optimal, the objective function (either the true objective or the sum of
infeasibilities) can be reduced by deleting the corresponding constraint (with index Jdel; see Section 11.3)
from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is non-zero, there is
no feasible point, and nag_opt_lin_lsq (e04ncc) will continue until the minimum value of the sum of
infeasibilities has been found. At this point, the Lagrange multiplier �j corresponding to an inequality
constraint in the working set will be such that � 1þ �ð Þ � �j � � when the associated constraint is at its
upper bound, and �� � �j � 1þ �ð Þ when the associated constraint is at its lower bound. Lagrange

multipliers for equality constraints will satisfy �j

�� �� � 1þ �.

The choice of step length is based on remaining feasible with respect to the satisfied constraints. If RZ is
non-singular and xþ p is feasible, � will be taken as unity. In this case, the projected gradient at �x will be
zero, and Lagrange multipliers are computed. Otherwise, � is set to �M , the step to the ‘nearest’ constraint
(with index Jadd; see Section 11.3), which is added to the working set at the next iteration.

If H is not input as a triangular matrix, it is overwritten by a triangular matrix R satisfying (8) obtained
using the Cholesky factorization in the QP case, or the QR factorization in the LS case. Column
interchanges are used in both cases, and an estimate is made of the rank of the triangular factor.
Thereafter, the dependent rows of R are eliminated from the problem.

Each change in the working set leads to a simple change to AFR: if the status of a general constraint
changes, a row of AFR is altered; if a bound constraint enters or leaves the working set, a column of AFR

changes. Explicit representations are recurred of the matrices T ;QFR and R; and of vectors QTg, QTc and
f , which are related by the formulae

f ¼ Pb� R
0

� �
QTx; b � 0 for the QP caseð Þ,

and

QTg ¼ QTc� RTf .

Note that the triangular factor R associated with the Hessian of the original problem is updated during both
the optimality and the feasibility phases.

The treatment of the singular case depends critically on the following feature of the matrix updating
schemes used in nag_opt_lin_lsq (e04ncc): if a given factor RZ is non-singular, it can become singular
during subsequent iterations only when a constraint leaves the working set, in which case only its last
diagonal element can become zero. This property implies that a vector satisfying (11) may be found using
the single back-substitution �RZpZ ¼ eZ , where �RZ is the matrix RZ with a unit last diagonal, and eZ is a

vector of all zeros except in the last position. If the Hessian matrix r2F is singular, the matrix R (and
hence RZ) may be singular at the start of the optimality phase. However, RZ will be non-singular if
enough constraints are included in the initial working set. (The matrix with no rows and columns is
positive-definite by definition, corresponding to the case when AFR contains nFR constraints.) The idea is
to include as many general constraints as necessary to ensure a non-singular RZ.

At the beginning of each phase, an upper triangular matrix R1 is determined that is the largest non-singular
leading sub-matrix of RZ . The use of interchanges during the factorization of H tends to maximize the
dimension of R1. (The rank of R1 is estimated using the optional parameter rank_tol; see Section 11.2.)
Let Z1 denote the columns of Z corresponding to R1, and let Z be partitioned as Z ¼ Z1 Z2ð Þ. A

working set for which Z1 defines the null space can be obtained by including the rows of ZT
2 as ‘artificial

constraints’. Minimization of the objective function then proceeds within the subspace defined by Z1.

The artificially augmented working set is given by

�AFR ¼ AFR

ZT
2

� �
, ð13Þ

so that pFR will satisfy AFRpFR ¼ 0 and ZT
2 pFR ¼ 0. By definition of the TQ factorization, �AFR

e04 – Minimizing or Maximizing a Function e04ncc

[NP3660/8] e04ncc.19

automatically satisfies the following:

�AFRQFR ¼ AFR

ZT
2

� �
QFR ¼ AFR

ZT
2

� �
Z1 Z2 Yð Þ ¼ 0 �T

� 	
,

where

�T ¼ 0 T
I 0

� �
,

and hence the TQ factorization of (13) requires no additional work.

The matrix Z2 need not be kept fixed, since its role is purely to define an appropriate null space; the TQ
factorization can therefore be updated in the normal fashion as the iterations proceed. No work is required

to ‘delete’ the artificial constraints associated with Z2 when ZT
1 gFR ¼ 0, since this simply involves

repartitioning QFR. When deciding which constraint to delete, the ‘artificial’ multiplier vector associated

with the rows of ZT
2 is equal to ZT

2 gFR, and the multipliers corresponding to the rows of the ‘true’ working
set are the multipliers that would be obtained if the temporary constraints were not present.

The number of columns in Z2 and Z1, the Euclidean norm of ZT
1 gFR, and the condition estimator of R1

appear in the extended iteration printout as Art, Zr, Norm Gz and Cond Rz respectively (see Section 11.3).

Although the algorithm of nag_opt_lin_lsq (e04ncc) does not perform simplex steps in general, there is
one exception: a linear program with fewer general constraints than variables (i.e., nL � n). (Use of the
simplex method in this situation leads to savings in storage.) At the starting point, the ‘natural’ working
set (the set of constraints exactly or nearly satisfied at the starting point) is augmented with a suitable
number of ‘temporary’ bounds, each of which has the effect of temporarily fixing a variable at its current
value. In subsequent iterations, a temporary bound is treated as a standard constraint until it is deleted
from the working set, in which case it is never added again.

One of the most important features of nag_opt_lin_lsq (e04ncc) is its control of the conditioning of the
working set, whose nearness to linear dependence is estimated by the ratio of the largest to smallest
diagonals of the TQ factor T (the printed value Cond T; see Section 11.3). In constructing the initial
working set, constraints are excluded that would result in a large value of Cond T. Thereafter,
nag_opt_lin_lsq (e04ncc) allows constraints to be violated by as much as a user-specified feasibility
tolerance (see ftol, Section 11.2) in order to provide, whenever possible, a choice of constraints to be
added to the working set at a given iteration. Let �M denote the maximum step at which xþ �Mp does
not violate any constraint by more than its feasibility tolerance. All constraints at distance � � � �Mð Þ
along p from the current point are then viewed as acceptable candidates for inclusion in the working set.
The constraint whose normal makes the largest angle with the search direction is added to the working set.
In order to ensure that the new iterate satisfies the constraints in the working set as accurately as possible,
the step taken is the exact distance to the newly added constraint. As a consequence, negative steps are
occasionally permitted, since the current iterate may violate the constraint to be added by as much as the
feasibility tolerance.

11 Optional Parameters

A number of optional input and output parameters to nag_opt_lin_lsq (e04ncc) are available through the
structure argument options, type Nag_E04_Opt. A parameter may be selected by assigning an appropriate
value to the relevant structure member; those parameters not selected will be assigned default values. If no
use is to be made of any of the optional parameters the user should use the NAG defined null pointer,
E04_DEFAULT, in place of options when calling nag_opt_lin_lsq (e04ncc); the default settings will then be
used for all parameters.

Before assigning values to options directly the structure must be initialized by a call to the function
nag_opt_init (e04xxc). Values may then be assigned to the structure members in the normal C manner.

Option settings may also be read from a text file using the function nag_opt_read (e04xyc) in which case
initialization of the options structure will be performed automatically if not already done. Any subsequent
direct assignment to the options structure must not be preceded by initialization.

If assignment of functions and memory to pointers in the options structure is required, then this must be
done directly in the calling program; they cannot be assigned using nag_opt_read (e04xyc).

e04ncc NAG C Library Manual

e04ncc.20 [NP3660/8]

11.1 Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for nag_opt_lin_lsq
(e04ncc) together with their default values where relevant. The number � is a generic notation for machine
precision (see nag_machine_precision (X02AJC)).

Nag_ProblemType prob Nag_LS1
Nag_Start start Nag_Cold
Boolean list Nag_True
Nag_PrintType print_level Nag_Soln_Iter

char outfile[80] stdout
void (*print_fun)() NULL

Integer fmax_iter max 50; 5 nþ nclinð Þð Þ
Integer max_iter max 50; 5 nþ nclinð Þð Þ
double crash_tol 0.01

double ftol
ffiffi
�

p

double inf_bound 1020

double inf_step max inf_bound; 1020Þ
�

double rank_tol 100� or 10
ffiffi
�

p

Integer *state size nþ nclin
double *ax size nclin
double *lambda size nþ nclin
Boolean hessian Nag_False
Integer iter

11.2 Description of the Optional Arguments

prob – Nag_ProblemType Default ¼ Nag_LS1

On entry: specifies the type of objective function to be minimized during the optimality phase. The
following are the ten possible values of prob and the size of the arrays h, kx, b and cvec that are required
to define the objective function:

Nag_FP h, b and cvec not referenced;

Nag_LP h and b not referenced, cvec½n�;
Nag_QP1 h½m�½tdh� symmetric, b and cvec not referenced;

Nag_QP2 h½m�½tdh� symmetric, b not referenced, cvec½n�;
Nag_QP3 h½m�½tdh� upper trapezoidal, b and cvec not referenced;

Nag_QP4 h½m�½tdh� upper trapezoidal, b not referenced, cvec½n�.
Nag_LS1 h½m�½tdh�, b½m�, cvec not referenced;

Nag_LS2 h½m�½tdh�, b½m�, cvec½n�;
Nag_LS3 h½m�½tdh� upper trapezoidal, b½m�, cvec not referenced;

Nag_LS4 h½m�½tdh� upper trapezoidal, b½m�, cvec½n�.
The array kx½n� must be supplied for all problem types but need only be initialized for types Nag_QP3,
Nag_QP4, Nag_LS3 and Nag_LS4. If H ¼ 0, i.e., the objective function is purely linear, the efficiency
of nag_opt_lin_lsq (e04ncc) may be increased by specifying prob ¼ Nag_LP.

Constraint: prob ¼ Nag_FP, Nag_LP, Nag_QP1, Nag_QP2, Nag_QP3, Nag_QP4, Nag_LS1, Nag_LS2,
Nag_LS3 or Nag_LS4.

e04 – Minimizing or Maximizing a Function e04ncc

[NP3660/8] e04ncc.21

start – Nag_Start Default ¼ Nag_Cold

On entry: specifies how the initial working set is chosen. With start ¼ Nag_Cold, nag_opt_lin_lsq
(e04ncc) chooses the initial working set based on the values of the variables and constraints at the initial
point. Broadly speaking, the initial working set will include equality constraints and bounds or inequality
constraints that violate or ‘nearly’ satisfy their bounds (to within the value of the optional parameter
crash_tol; see below).

With start ¼ Nag_Warm, the user must provide a valid definition of every array element of the optional
parameter state (see below). nag_opt_lin_lsq (e04ncc) will override the user’s specification of state if
necessary, so that a poor choice of the working set will not cause a fatal error. For instance, any elements
of state which are set to �2, �1 or 4 will be reset to zero, as will any elements which are set to 3 when
the corresponding elements of bl and bu are not equal. A warm start will be advantageous if a good
estimate of the initial working set is available – for example, when nag_opt_lin_lsq (e04ncc) is called
repeatedly to solve related problems.

Constraint: start ¼ Nag_Cold or Nag_Warm.

list – Nag_Boolean Default ¼ NagTrue

On entry: if list ¼ NagTrue the parameter settings in the call to nag_opt_lin_lsq (e04ncc) will be printed.

print_level – Nag_PrintType Default ¼ Nag_Soln_Iter

On entry: the level of results printout produced by nag_opt_lin_lsq (e04ncc). The following values are
available:

Nag_NoPrint No output.

Nag_Soln The final solution.

Nag_Iter One line of output for each iteration.

Nag_Iter_Long A longer line of output for each iteration with more information (line exceeds
80 characters).

Nag_Soln_Iter The final solution and one line of output for each iteration.

Nag_Soln_Iter_Long The final solution and one long line of output for each iteration (line exceeds 80
characters).

Nag_Soln_Iter_Const As Nag_Soln_Iter_Long with the Lagrange multipliers, the variables x, the
constraint values Ax and the constraint status also printed at each iteration.

Nag_Soln_Iter_Full As Nag_Soln_Iter_Const with the diagonal elements of the matrix T associated
with the TQ factorization (see (4) in Section 10.2) of the working set, and the
diagonal elements of the upper triangular matrix R printed at each iteration.

Details of each level of results printout are described in Section 11.3.

Constraint: print_level ¼ Nag_NoPrint, Nag_Soln, Nag_Iter, Nag_Soln_Iter, Nag_Iter_Long,
Nag_Soln_Iter_Long, Nag_Soln_Iter_Const or Nag_Soln_Iter_Full.

outfile – const char[80] Default ¼ stdout

On entry: the name of the file to which results should be printed. If outfile½0� ¼ ‘n0’ then the stdout
stream is used.

print_fun – pointer to function Default ¼ NULL

On entry: printing function defined by the user; the prototype of print_fun is

void(*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

See Section 11.3.1 below for further details.

e04ncc NAG C Library Manual

e04ncc.22 [NP3660/8]

fmax_iter – Integer i Default ¼ max 50; 5 nþ nclinð Þð Þ
max_iter – Integer i Default ¼ max 50; 5 nþ nclinð Þð Þ
On entry: fmax_iter and max_iter specify the maximum number of iterations allowed in the feasibility
and optimality phase, respectively.

If the user wishes to check that a call to nag_opt_lin_lsq (e04ncc) is correct before attempting to solve the
problem in full then fmax_iter may be set to 0. No iterations will then be performed but all initialization
prior to the first iteration will be done and a listing of parameter settings will be output, if optional
parameter list ¼ NagTrue (the default setting).

Constraints:

fmax_iter � 0;
max_iter � 0.

crash_tol – double Default ¼ 0:01

On entry: crash_tol is used when optional parameter start ¼ Nag_Cold (the default) and nag_opt_lin_lsq
(e04ncc) selects an initial working set. The initial working set will include (if possible) bounds or general
inequality constraints that lie within crash_tol of their bounds. In particular, a constraint of the form

aTj x � l will be included in the initial working set if aTj x� l
�� �� � crash_tol� 1þ lj jð Þ.

Constraint: 0:0 � crash_tol � 1:0.

ftol – double Default ¼
ffiffi
�

p

On entry: defines the maximum acceptable absolute violation in each constraint at a ‘feasible’ point. For
example, if the variables and the coefficients in the general constraints are of order unity, and the latter are

correct to about 6 decimal digits, it would be appropriate to specify ftol as 10�6.

nag_opt_lin_lsq (e04ncc) attempts to find a feasible solution before optimizing the objective function. If
the sum of infeasibilities cannot be reduced to zero, nag_opt_lin_lsq (e04ncc) finds the minimum value of
the sum. Let Sinf be the corresponding sum of infeasibilities. If Sinf is quite small, it may be
appropriate to raise ftol by a factor of 10 or 100. Otherwise, some error in the data should be suspected.

Note that a ‘feasible solution’ is a solution that satisfies the current constraints to within the feasibility
tolerance ftol.

Constraint: ftol > 0:0.

inf_bound – double Default ¼ 1020

On entry: inf_bound defines the ‘infinite’ bound in the definition of the problem constraints. Any upper
bound greater than or equal to inf_bound will be regarded as plus infinity (and similarly any lower bound
less than or equal to �inf_bound will be regarded as minus infinity).

Constraint: inf_bound > 0:0.

inf_step – double Default ¼ max inf_bound; 1020Þ
�

On entry: specifies the magnitude of the change in variables that will be considered a step to an unbounded
solution. (Note that an unbounded solution can occur only when the Hessian is singular and the objective
contains an explicit linear term.) If the change in x during an iteration would exceed the value of inf_step,
the objective function is considered to be unbounded below in the feasible region.

Constraint: inf_step > 0:0.

rank_tol – double Default ¼ 100� or 10
ffiffi
�

p

The default value is 100� for problem types QP1, LS1 and LS3 but is 10
ffiffi
�

p
for other QP and LS problem

types. This option does not apply to FP or LP problem types.

e04 – Minimizing or Maximizing a Function e04ncc

[NP3660/8] e04ncc.23

On entry: rank_tol enables the user to control the estimate of the triangular factor R1 (see Section 10.3).
If �i denotes the function �i ¼ max R11j j; R22j j; . . . ; Riij jf g, the rank of R is defined to be smallest index i
such that Riþ1;iþ1

�� �� � rank_tol� �iþ1

�� ��.
Constraint: 0:0 < rank_tol < 1:0.

state – Integer * i Default memory ¼ nþ nclin

On entry: state need not be set if the default option of start ¼ Nag_Cold is used as nþ nclin values of
memory will be automatically allocated by nag_opt_lin_lsq (e04ncc).

If the option start ¼ Nag_Warm has been chosen, state must point to a minimum of nþ nclin elements
of memory. This memory will already be available if the options structure has been used in a previous
call to nag_opt_lin_lsq (e04ncc) from the calling program, with start ¼ Nag_Cold and the same values of
n and nclin. If a previous call has not been made sufficient memory must be allocated to state by the user.

When a warm start is chosen state should specify the status of the constraints at the start of the feasibility
phase. More precisely, the first n elements of state refer to the upper and lower bounds on the variables,
and the next nL elements refer to the general linear constraints (if any). Possible values for state½j� are as
follows:

state½j� Meaning
0 The constraint should not be in the initial working set.
1 The constraint should be in the initial working set at its lower bound.
2 The constraint should be in the initial working set at its upper bound.
3 The constraint should be in the initial working set as an equality. This value should only be

specified if bl½j� ¼ bu½j�.
The values �2, �1 and 4 are also acceptable but will be reset to zero by the function, as will any elements
which are set to 3 when the corresponding elements of bu and bl are not equal. If nag_opt_lin_lsq
(e04ncc) has been called previously with the same values of n and nclin, state already contains satisfactory
information. (See also the description of the optional parameter start.) The function also adjusts (if
necessary) the values supplied in x to be consistent with the values supplied in state.

Constraint: �2 � state½j� 1� � 4, for j ¼ 1; 2; . . . ;nþ nclin� 1.

On exit: the status of the constraints in the working set at the point returned in x. The significance of each
possible value of state½j� is as follows:

state½j� Meaning
�2 The constraint violates its lower bound by more than the feasibility tolerance.
�1 The constraint violates its upper bound by more than the feasibility tolerance.
0 The constraint is satisfied to within the feasibility tolerance, but is not in the working set.
1 This inequality constraint is included in the working set at its lower bound.
2 This inequality constraint is included in the working set at its upper bound.
3 This constraint is included in the working set as an equality. This value of state can occur only

when bl½j� ¼ bu½j�.
4 This corresponds to optimality being declared with x½j� being temporarily fixed at its current

value. This value of state can only occur when fail.code ¼ NW_SOLN_NOT_UNIQUE.

ax – double * r Default memory ¼ nclin

On entry: nclin values of memory will be automatically allocated by nag_opt_lin_lsq (e04ncc) and this is
the recommended method of use of ax. However a user may supply memory from the calling program.

On exit: if nclin > 0, ax points to the final values of the linear constraints Ax.

lambda – double * r Default memory ¼ nþ nclin

On entry: nþ nclin values of memory will be automatically allocated by nag_opt_lin_lsq (e04ncc) and this
is the recommended method of use of lambda. However a user may supply memory from the calling
program.

On exit: the values of the Lagrange multipliers for each constraint with respect to the current working set.
The first n elements contain the multipliers for the bound constraints on the variables, and the next nL

e04ncc NAG C Library Manual

e04ncc.24 [NP3660/8]

elements contain the multipliers for the general linear constraints (if any). If state½j� 1� ¼ 0 (i.e.,
constraint j is not in the working set), lambda½j� 1� is zero. If x is optimal, lambda½j� 1� should be non-
negative if state½j� 1� ¼ 1, non-positive if state½j� 1� ¼ 2 and zero if state½j� 1� ¼ 4.

hessian – Nag_Boolean Default ¼ NagFalse

On entry: controls the contents of the parameter h on return from nag_opt_lin_lsq (e04ncc).
nag_opt_lin_lsq (e04ncc) works exclusively with the transformed and reordered matrix HQ (8), and
hence extra computation is required to form the Hessian itself. If the optional parameter
hessian ¼ NagFalse, h contains the Cholesky factor of the matrix HQ with columns ordered as indicated

by kx (see Section 5). If hessian ¼ NagTrue, h contains the Cholesky factor of the Hessian matrix r2F,
with columns ordered as indicated by kx.

iter – Integer i

On exit: the total number of iterations performed in the feasibility phase and (if appropriate) the optimality
phase.

11.3 Description of Printed Output

The level of printed output can be controlled by the user with the structure members list and print_level
(see Section 11.2). If list ¼ NagTrue then the parameter values to nag_opt_lin_lsq (e04ncc) are listed,
whereas the printout of results is governed by the value of print_level. The default of
print_level ¼ Nag_Soln_Iter provides a single line of output at each iteration and the final result. This
section describes all of the possible levels of results printout available from nag_opt_lin_lsq (e04ncc).

To aid interpretation of the printed results, the following convention is used for numbering the constraints:
indices 1 to n refer to the bounds on the variables, and indices nþ 1 to nþ nL refer to the general
constraints.

When print_level ¼ Nag_Iter or Nag_Soln_Iter the following line of output is produced at every
iteration. In all cases, the values of the quantities printed are those in effect on completion of the given
iteration.

Itn is the iteration count.

Step is the step taken along the computed search direction. If a constraint is added during
the current iteration, Step will be the step to the nearest constraint. During the
optimality phase, the step can be greater than 1:0 only if the factor RZ is singular (see
Section 10.3).

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a weighted
sum of the magnitudes of constraint violations. If x is feasible, Objective is the value
of the objective function. The output line for the final iteration of the feasibility phase
(i.e., the first iteration for which Ninf is zero) will give the value of the true objective at
the first feasible point.

During the optimality phase, the value of the objective function will be non-increasing. During the
feasibility phase, the number of constraint infeasibilities will not increase until either a feasible point is
found, or the optimality of the multipliers implies that no feasible point exists. Once optimal multipliers
are obtained, the number of infeasibilities can increase, but the sum of infeasibilities will either remain
constant or be reduced until the minimum sum of infeasibilities is found.

Norm Gz ZT
1 gFR

�� ��, the Euclidean norm of the reduced gradient with respect to Z1 (see
Section 10.3). During the optimality phase, this norm will be approximately zero after a
unit step.

If print_level ¼ Nag_Iter_Long, Nag_Soln_Iter_Long, Nag_Soln_Iter_Const or Nag_Soln_Iter_Full
the line of printout is extended to give the following additional information. (Note that this longer line
extends over more than 80 characters.)

e04 – Minimizing or Maximizing a Function e04ncc

[NP3660/8] e04ncc.25

Jdel is the index of the constraint deleted from the working set, along with the designation L
(lower bound), U (upper bound), E (equality), F (temporarily fixed variable) or A
(artificial constraint). If Jdel is zero, no constraint was deleted.

Jadd is the index of the constraint added to the working set, along with a designation as for
Jdel. If Jadd is zero, no constraint was added.

Bnd is the number of simple bound constraints in the current working set.

Lin is the number of general linear constraints in the current working set.

Art is the number of artificial constraints in the working set, i.e., the number of columns of
Z2 (see Section 10.3).

Zr is the number of columns of Z1 (see Section 10.2). Zr is the dimension of the subspace
in which the objective function is currently being minimized. The value of Zr is the
number of variables minus the number of constraints in the working set; i.e.,
Zr ¼ n� Bndþ Linþ Artð Þ.

The value of nZ , the number of columns of Z (see Section 10) can be calculated as nZ ¼ n� Bndþ Linð Þ.
A zero value of nZ implies that x lies at a vertex of the feasible region.

Norm Gf is the Euclidean norm of the gradient function with respect to the free variables, i.e.,
variables not currently held at a bound.

Cond T is a lower bound on the condition number of the working set.

Cond Rz is a lower bound on the condition number of the triangular factor R1 (the first Zr rows
and columns of the factor RZ).

When print_level ¼ Nag_Soln_Iter_Const or Nag_Soln_Iter_Full more detailed results are given at each
iteration. For the setting print_level ¼ Nag_Soln_Iter_Const additional values output are:

Value of x is the value of x currently held in x.

State is the current value of state associated with x.

Value of Ax is the value of Ax currently held in ax.

State is the current value of state associated with Ax.

Also printed are the Lagrange Multipliers for the bound constraints, linear constraints and artificial
constraints.

If print_level ¼ Nag_Soln_Iter_Full then the diagonals of T and R are also output at each iteration.

When print_level ¼ Nag_Soln, Nag_Soln_Iter, Nag_Soln_Iter_Long, Nag_Soln_Iter_Const or
Nag_Soln_Iter_Full the final printout from nag_opt_lin_lsq (e04ncc) includes a listing of the status of
every variable and constraint. The following describes the printout for each variable.

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a fixed
variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily fixed at
its current value). If Value lies outside the upper or lower bounds by more than the
optional parameter ftol (default value

ffiffi
�

p
, where � is the machine precision; see

Section 11.2), State will be ++ or respectively.

A key is sometimes printed before State to give some additional information about the state of a variable.

A
Alternative optimum possible. The variable is active at one of its bounds, but its
Lagrange Multiplier is essentially zero. This means that if the variable were
allowed to start moving away from its bound, there would be no change to the
objective function. The values of the other free variables might change, giving a
genuine alternative solution. However, if there are any degenerate variables
(labelled D), the actual change might prove to be zero, since one of them could

e04ncc NAG C Library Manual

e04ncc.26 [NP3660/8]

encounter a bound immediately. In either case, the values of the Lagrange
multipliers might also change.

D
Degenerate. The variable is free, but it is equal to (or very close to) one of its
bounds.

I
Infeasible. The variable is currently violating one of its bounds by more than ftol.

Value is the value of the variable at the final iteration.

Lower bound is the lower bound specified for variable j. (None indicates that
bl½j� 1� � �inf_bound, where inf_bound is the optional parameter.)

Upper bound is the upper bound specified for variable j. (None indicates that bu½j� 1� � inf_bound,
where inf_bound is the optional parameter.)

Lagr mult is the value of the Lagrange multiplier for the associated bound. This will be zero if
State is FR unless bl½j� 1� � �inf_bound and bu½j� 1� � inf_bound, in which case
the entry will be blank. If x is optimal, the multiplier should be non-negative if State
is LL, and non-positive if State is UL.

Residual is the difference between the variable Value and the nearer of its (finite) bounds
bl½j� 1� and bu½j� 1�. A blank entry indicates that the associated variable is not
bounded (i.e., bl½j� 1� � �inf_bound and bu½j� 1� � inf_bound).

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, bl½j� 1� and bu½j� 1� replaced by bl½nþ j� 1� and bu½nþ j� 1�
respectively, and with the following change in the heading:

L Con the name (L) and index j, for j ¼ 1; 2; . . . ; nL of the linear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

If print_level ¼ Nag_NoPrint then printout will be suppressed; the user can print the final solution when
nag_opt_lin_lsq (e04ncc) returns to the calling program.

11.3.1 Output of results via a user-defined printing function

The user may also specify their own print function for output of iteration results and the final solution by
use of the print_fun function pointer, which has prototype

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm)

The rest of this section can be skipped by a user who only wishes to use the default printing facilities.

When a user-defined function is assigned to print_fun this will be called in preference to the internal print
function of nag_opt_lin_lsq (e04ncc). Calls to the user-defined function are again controlled by means of
the print_level member. Information is provided through st and comm, the two structure arguments to
print_fun.

If comm ! it_prt ¼ NagTrue then the results from the last iteration of nag_opt_lin_lsq (e04ncc) are
provided through st. Note that print_fun will be called with comm ! it_prt ¼ NagTrue only if
print_level ¼ Nag_Iter, Nag_Iter_Long, Nag_Soln_Iter, Nag_Soln_Iter_Long, Nag_Soln_Iter_Const
or Nag_Soln_Iter_Full. The following members of st are set:

n – Integer

The number of variables.

nclin – Integer

The number of linear constraints.

e04 – Minimizing or Maximizing a Function e04ncc

[NP3660/8] e04ncc.27

iter – Integer

The iteration count.

jdel – Integer

Index of constraint deleted from the working set.

jadd – Integer

Index of constraint added to the working set.

step – double

The step taken along the computed search direction.

ninf – Integer

The number of violated constraints (infeasibilities).

f – double

The current value of the objective function if st ! ninf ¼ 0; otherwise, f is a weighted sum of the
magnitudes of constraint violations.

bnd – Integer

Number of bound constraints in the working set.

lin – Integer

Number of general linear constraints in the working set.

nart – Integer

Number of artificial constraints in the working set (see Section 10.3).

nrank – Integer

The rank of the upper triangular matrix R (see Section 10.3).

nrz – Integer

Number of columns of Z1 (see Section 10.2).

norm_gz – double

Euclidean norm of the reduced gradient, ZT
1 gFR

�� �� (see Section 10.3).

norm_gf – double

Euclidean norm of the gradient function with respect to the free variables.

cond_t – double

A lower bound on the condition number of the working set.

cond_r – double

A lower bound on the condition number of the triangular factor R1 (see Section 10.3).

x – double *

The components x½j� 1� of the current point x, j ¼ 1; 2; . . . ; st ! n.

e04ncc NAG C Library Manual

e04ncc.28 [NP3660/8]

ax – double *

If st ! nclin > 0, the st ! nclin components of the linear constraints Ax.

state – Integer *

state contains the status of the st ! n variables and st ! nclin general linear constraints. See
Section 11.2 for a description of the possible status values.

diagt – double *

If st ! lin > 0, the st ! lin elements in the diagonal of the matrix T .

diagr – double *

If st ! nrank > 0, the first st ! nrank elements of the diagonal of the upper triangular matrix R.

If comm ! new_lm ¼ NagTrue then the Lagrange multipliers have been updated and the following
members of st are set:

bnd – Integer

The number of bound constraints in the working set.

kx – Integer *
bclambda – double *

Indices of the bound constraints in the working set, with associated multipliers. st ! kx½i� is the
index of the constraint with multiplier st ! bclambda½i�, for i ¼ 0; 1; . . . ; st ! bnd� 1.

lin – Integer

The number of linear constraints in the working set.

kactive – Integer *
lambda – double *

Indices of the linear constraints in the working set, with associated multipliers. st ! kactive½i� is
the index of the constraint with multiplier st ! lambda½st ! bndþ i�, for
i ¼ 0; 1; . . . ; st ! lin� 1.

nart – Integer

The number of artificial constraints in the working set (see Section 10.3).

gq – double *

st ! gq½i�, for i ¼ 0; 1; . . . ; st ! nart� 1, hold the multipliers for the artificial constraints.

If comm ! sol_prt ¼ NagTrue then the final result from nag_opt_lin_lsq (e04ncc) is available and the
following members of st are set:

n – Integer

The number of variables.

nclin – Integer

The number of linear constraints.

iter – Integer

The iteration count.

x – double *

The components x½j� 1� of the final point x, for j ¼ 1; 2; . . . ; st ! n.

e04 – Minimizing or Maximizing a Function e04ncc

[NP3660/8] e04ncc.29

feasible – Nag_Boolean

Will be Nag_True if the final point is feasible.

f – double

The final value of the objective function if st ! feasible is Nag_True; otherwise, the sum of
infeasibilities. If the problem is of type FP and x is feasible then f is set to zero.

ax – double *

If st ! nclin > 0, the st ! nclin components of the final linear constraint activities, Ax.

state – Integer *

Contains the final status of the st ! n variables and st ! nclin general linear constraints. See
Section 11.2 for a description of the possible status values.

lambda – double *

Contains the st ! nþ st ! nclin final values of the Lagrange multipliers.

bl – double *

Contains the st ! nþ st ! nclin lower bounds.

bu – double *

Contains the st ! nþ st ! nclin upper bounds.

endstate – Nag_EndState

The state of termination of nag_opt_lin_lsq (e04ncc). Possible values of endstate and their
correspondence to the exit value of fail are:

Value of endstate Value of fail
Nag_Feasible or Nag_Optimal NE_NOERROR
Nag_Weakmin NW_SOLN_NOT_UNIQUE
Nag_Unbounded NE_UNBOUNDED
Nag_Infeasible NW_NOT_FEASIBLE
Nag_Too_Many_Iter NW_TOO_MANY_ITER
Nag_Cycling NE_CYCLING

The relevant members of the structure comm are:

it_prt – Nag_Boolean

Will be Nag_True when the print function is called with the result of the current iteration.

sol_prt – Nag_Boolean

Will be Nag_True when the print function is called with the final result.

new_lm – Nag_Boolean

Will be Nag_True when the Lagrange multipliers have been updated.

user – double *
iuser – Integer *
p – Pointer

Pointers for communication of user information. If used they must be allocated memory by the user
either before entry to nag_opt_lin_lsq (e04ncc) or during a call to print_fun. The type Pointer will
be void * with a C compiler that defines void * and char * otherwise.

e04ncc NAG C Library Manual

e04ncc.30 [NP3660/8]

12 Example 2 (EX2)

To minimize the quadratic function cTxþ 1
2x

THx, where

c ¼ �4:0;�1:0;�1:0;�1:0;�1:0;�1:0;�1:0;�1:0;�0:3ð ÞT,

H ¼

2 1 1 1 1 0 0 0 0
1 2 1 1 1 0 0 0 0
1 1 2 1 1 0 0 0 0
1 1 1 2 1 0 0 0 0
1 1 1 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

subject to the bounds

�2 � x1 � 2
�2 � x2 � 2
�2 � x3 � 2
�2 � x4 � 2
�2 � x5 � 2
�2 � x6 � 2
�2 � x7 � 2
�2 � x8 � 2
�2 � x9 � 2

and to the general constraints

�2:0 � x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 þ x8 þ 4x9 � 1:5
�2:0 � x1 þ 2x2 þ 3x3 þ 4x4 þ 2x5 þ x6 þ x7 þ x8 þ x9 � 1:5

�2:0 � x1 � x2 þ x3 � x4 þ x5 þ x6 þ x7 þ x8 þ x9 � 4:0

The initial point, which is feasible, is

x0 ¼ 0; 0; 0; 0; 0; 0; 0; 0; 0ð ÞT,
and F x0ð Þ ¼ 0.

The optimal solution (to five figures) is

x� ¼ 2:0;�0:23333;�0:26667;�0:3;�0:1; 2:0;�1:7777;�0:45555ð ÞT,

and F x�ð Þ ¼ �8:0678. Three bound constraints and two general constraints are active at the solution.
Note that, although the Hessian matrix is positive semi-definite, the point x� is unique.

This example illustrates the use of the options structure. Since the problem is of type QP2 (as described in
Section 3) and the default value of the optional parameter prob ¼ Nag_LS1, it is necessary to reset this
parameter to prob ¼ Nag_QP2 in order to solve the problem. This is achieved by declaring the options
structure and initializing it by calling nag_opt_init (e04xxc). Then prob is assigned directly, before calling
nag_opt_lin_lsq (e04ncc). Note that the cvec parameter to nag_opt_lin_lsq (e04ncc), which was NULL in
EX1 (see Section 9), needs to be supplied in EX2, whereas b, which was supplied in EX1 (and is required
for all LS type problems), does not appear in QP problems and is NULL in EX2. On return from
nag_opt_lin_lsq (e04ncc), nag_opt_free (e04xzc) is used to free the memory assigned to the pointers in the
options structure. Users should not use the standard C function free() for this purpose.

See Section 9 for the example program.

e04 – Minimizing or Maximizing a Function e04ncc

[NP3660/8] e04ncc.31 (last)

	e04ncc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	m
	n
	nclin
	a
	tda
	bl
	bu
	cvec
	b
	h
	tdh
	kx
	x
	objf
	options
	comm
	fail
	5.1 Description of Printed Output

	6 Error Indicators and Warnings
	NE_2_INT_ARG_LT
	NE_ALLOC_FAIL
	NE_ARRAY_CONS
	NE_BAD_PARAM
	NE_B_NULL
	NE_BOUND
	NE_BOUND_LCON
	NE_CVEC_NULL
	NE_CYCLING
	NE_H_NULL_QP
	NE_INT_ARG_LT
	NE_INTERNAL_ERROR
	NE_INVALID_INT_RANGE_1
	NE_INVALID_REAL_RANGE_F
	NE_INVALID_REAL_RANGE_FF
	NE_NOT_APPEND_FILE
	NE_NOT_CLOSE_FILE
	NE_OPT_NOT_INIT
	NE_STATE_VAL
	NE_UNBOUNDED
	NE_WARM_START
	NW_NOT_FEASIBLE
	NW_OVERFLOW_WARN
	NW_SOLN_NOT_UNIQUE
	NW_TOO_MANY_ITER

	7 Accuracy
	8 Further Comments
	8.1 Termination Criteria
	8.2 Scaling

	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	10 Further Description
	10.1 Overview
	10.2 Definition of the Search Direction
	10.3 The Main Iteration

	11 Optional Parameters
	11.1 Optional Parameter Checklist and Default Values
	11.2 Description of the Optional Arguments
	prob
	start
	list
	print_level
	outfile
	print_fun
	fmax_iter
	max_iter
	crash_tol
	ftol
	inf_bound
	inf_step
	rank_tol
	state
	ax
	lambda
	hessian
	iter

	11.3 Description of Printed Output
	11.3.1 Output of results via a userefined printing function
	n
	nclin
	iter
	jdel
	jadd
	step
	ninf
	f
	bnd
	lin
	nart
	nrank
	nrz
	norm_gz
	norm_gf
	cond_t
	cond_r
	x
	ax
	state
	diagt
	diagr
	bnd
	kx
	bclambda
	lin
	kactive
	lambda
	nart
	gq
	n
	nclin
	iter
	x
	feasible
	f
	ax
	state
	lambda
	bl
	bu
	endstate
	it_prt
	sol_prt
	new_lm
	user
	iuser
	p

	12 Example 2 (EX2)

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

